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Abstract
Moving frames of various kinds are used to derive bi-Hamiltonian operators
and associated hierarchies of multi-component soliton equations from group-
invariant flows of non-stretching curves in constant-curvature manifolds and
Lie-group manifolds. The hierarchy in the constant-curvature case consists
of a vector mKdV equation coming from a parallel frame, a vector potential
mKdV equation coming from a covariantly constant frame, and higher order
counterparts generated by an underlying vector mKdV recursion operator. In
the Lie-group case, the hierarchy comprises a group-invariant analogue of the
vector NLS equation coming from a left-invariant frame, along with higher
order counterparts generated by a recursion operator that is like a square root
of the mKdV one. The corresponding respective curve flows are found to
be given by geometric nonlinear PDEs, specifically mKdV and group-invariant
analogues of Schrödinger maps. In all cases the hierarchies also contain variants
of vector sine-Gordon equations arising from the kernel of the respective
recursion operators. The geometric PDEs that describe the corresponding
curve flows are shown to be wave maps.

PACS numbers: 02.30.Ik, 02.40.−k, 05.45.−a
Mathematics Subject Classification: 37K10, 35Q53, 37K25

1. Introduction

Over the years there has been much interest in the close connection between classical soliton
equations such as Korteweg de Vries (KdV), nonlinear Schrödinger (NLS), sine-Gordon (SG),
on one hand, and nonlinear geometric partial differential equations (PDEs) on the other hand,
particularly wave maps and Schrödinger maps which are natural generalizations of the ordinary
wave equation and Schrödinger equation in 1 + 1 dimensions for a function taking values in a
Riemannian or Kähler target space N.
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One prominent example is the O(3) Heisenberg model �ut = �u × �uxx, |�u| = 1, which
is geometrically just a Schrödinger map equation γt = J∇xγx where γ (t, x) is a map into
the target space S2 and ∇x, J are the pullback of the covariant derivative and the complex
structure tensor (Hodge-star operator) determined by the metric on S2 in terms of the local
coordinates represented by γ . This model is well known to be equivalent to the NLS
equation 0 = iφt + φxx + 2|φ|2φ by means of a transformation [1] found by Hasimoto1. The
transformation is φ = κ exp(i

∫
τ dx) where κ, τ are the curvature and torsion associated with �u

viewed as the tangent vector to an arclength-parameterized space curve in R
3, whose Euclidean

Frenet frame is ( �T , �N, �B) = (�u, κ−1�ux, κ
−1�u × �ux), evolving under the Heisenberg equation.

This evolution gives the equations κt = −2τκx −κτx, τt = κ−1κxxx −κ−2κxκxx +κκx −2ττx ,
coinciding with the motion of a vortex filament studied by Hasimoto [3]. A more direct
geometrical formulation of the Hasimoto transformation has been obtained in the context of
recent analytical work [4] on the Cauchy problem for S2 Schrödinger maps. The main idea is to
introduce a covariantly-constant orthonormal frame e1, e2 = Je1 satisfying ∇xe1 = ∇xe2 = 0
along the curve in S2 defined by γ (t, x) for t = const. The evolution of the components of
the tangent vector γx = q1e1 + q2e2 in this frame then reduces precisely to the NLS equation
for φ = q1 + iq2.

Another example of wide interest is the O(3) sigma model �utx = −�u�ut · �ux, |�u| = 1.
This model has long been known to be equivalent [5] to the SG equation 0 = θtx + sin θ

through the geometrical relation �ut · �ux = |�ut ||�ux | cos θ combined with a conformal scaling
of t, x, such that |�ut | = |�ux | = 1 as allowed by the conservation laws Dx |�ut | = Dt |�ux | = 0.
The equivalence can be looked on as a Hasimoto transformation [6] θ = −∫

τ dx in terms
of the torsion τ given by �u which is again viewed as determining a Euclidean Frenet frame
( �T , �N, �B) = (�u, κ−1�ux, κ

−1�u × �ux) of an arclength-parameterized space curve in R
3 but

now evolving under the sigma model equation and subject to constant curvature κ = 1. The
equations for the evolution of the torsion and curvature are simply κt = 0, τtx = −τ

√
1 − τt

2.
A deeper origin for the SG equation comes from the geometric formulation of the O(3) sigma
model as an S2 wave map equation ∇xγt = 0 where γ (t, x) is again a map into the target space
S2. The curve for t = const defined by this map γ (t, x) moves with uniform speed and does
not stretch, because of the previous conservation laws. Consequently, a conformal scaling
of t, x allows a covariantly-constant orthonormal frame e1, e2 to be adapted to the evolution
vector γt = e1, with ∇xe1 = ∇xe2 = 0 holding along the curve. The tangent vector then takes
the form γx = cos θe1 + sin θe2 in terms of a rotation angle θ whose evolution is just given by
the SG equation.

From a closely related point of view, the mKdV equation is known to arise [7] as an
O(3)-invariant motion of a non-stretching curve γ (t, x) in S2 as formulated using a moving
orthonormal frame adapted to the curve so that γx = κe1, J γx = κe2, (i.e., an intrinsic Frenet
frame) where κt = 0 is the condition of no stretching. O(3) invariance means that the frame
components of the motion γt = h1e1 + h2e2 must depend only on differential invariants of
the curve under the group action determined by the isometry group O(3) of S2. There is a
fundamental invariant given by the intrinsic curvature of γ (t, x) defined through the Serret–
Frenet equations on S2 for the moving frame ∇xe1 = τe2,∇xe2 = −τe1, with x conformally
scaled proportional to the arclength, so κ = const. This invariant τ can also be viewed as
the torsion of an arclength-parameterized space curve in R

3 whose Euclidean Frenet frame
is associated with γ (t, x) via the identifications γ �→ �T = �u, e1 �→ �N = κ−1�ux, e2 �→
�B = κ−1�u × �ux under the embedding of S2 into R

3 given by |�u| = 1. Since the curvature
of this space curve in R

3 is κ = const, a complete set of differential invariants is obtained

1 In fact, the Hasimoto transformation was already known at the start of the last century [2].
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from x-derivatives of the torsion τ , and thus h1 = h1(τ, τx, τxx, . . .), h2 = h2(τ, τx, τxx, . . .).
The non-stretching condition on the motion of the curve imposes the relation Dxh1 = τh2,
while the equation of motion of the curve yields the flow τt = κ−1Dx(Dxh2 + τh1) + κh2.
For the particular motion h1 = 1

2τ 2 − κ2, h2 = τx , this flow becomes precisely the mKdV
equation τt = κ−1

(
τxxx + 3

2τ 2τx

)
on τ . More remarkably, as shown in [7], when the flow

of a non-stretching curve is expressed in the operator form τt = κ−1R(h2) + κh2 with
h1 = D−1

x (τh2) put in terms of the normal frame component h2 of the evolution vector, it
contains the recursion operator R = D2

x + τ 2 + τxD
−1
x τ of the hierarchy of mKdV soliton

equations. For instance, the fifth-order mKdV equation on τ arises from the curve motion
generated by h2 = R(τx) − κ2τx = τxxx +

(
3
2τ 2 − κ2

)
τx, h1 = D−1

x (τR(τx) − κ2ττx) =
ττxx − 1

2τ 2
x + 3

8τ 4 − 1
2κ2τ 2.

More generally, other recent work has studied group-invariant motions of non-stretching
curves γ (t, x) in higher dimensional constant curvature spaces N � Sn,Hn, R

n, first in
n = 3 dimensions [8] and subsequently in all dimensions n � 2 [9]. The main results give
a geometric origin of the vector mKdV equation vt = vxxx + 3

2v · vvx and its associated
hierarchy of integrable soliton equations, for an n − 1-component vector variable v(t, x)

given by the frame components of the principal normal along the curve, generalizing the
scalar case n = 2. This generalization relies on the use of a parallel moving (orthonormal)
frame adapted to the curve γ (t, x), differing from an intrinsic Frenet (orthonormal) frame.
In a parallel frame [10], the normal frame vectors are defined to have a purely tangential
derivative along the curve, while the derivative of the tangent frame vector is normal to
the curve. These properties uniquely determine a Frenet frame in n = 2 dimensions; in
n > 2 dimensions a parallel frame is related to a Frenet frame by a certain local SO(n − 1)

rotation acting on the normal vectors, and in the case n = 3 [12] this rotation angle is
given by the formula for a Hasimoto transformation in terms of the torsion determined
by the Serret–Frenet equations of the frame. As shown by the results in [9, 11], the
Cartan structure equations (which generalize the Serret–Frenet equations [13]) for such a
frame and its associated connection matrix coming from the flow of a non-stretching curve
encode compatible Hamiltonian symplectic and cosymplectic operators with respect to the
Hamiltonian flow variable v; moreover, these operators produce a hereditary recursion
operator whenever the flow is invariant under the SO(n− 1) structure group preserving
the frame. In the case n = 2, for spaces N with constant Gaussian curvature χ (i.e.,
χ = +1 for the sphere N = S2, χ = −1 for the hyperboloid N = H 2, χ = 0 for the
plane N = R

2), the encoding of the operators is especially simple. Here, v is just a
1-component variable identified with the invariant τ of the curve γ (t, x), while x is the
arclength so κ = 1. The frame equation of motion of γ (t, x) has the Hamiltonian formulation
τt = H(�) + χI(�) where H, I are compatible Hamiltonian (cosymplectic) operators,
defined by � = Dxh⊥ + τD−1

x (τh⊥) = I−1(h⊥) which is a Hamiltonian symplectic operator
and Dx� = H(�). In geometrical terms, h⊥ is the normal frame component of the curve
motion γt and � is the associated connection component in the Serret–Frenet equations
for this motion, ∇t e1 = �e2,∇t e2 = −�e1. Viewed in a Hamiltonian setting, h⊥∂/∂τ

and � dτ represent a Hamiltonian vector field and covector field on the x-jet space of
the flow variable τ(t, x). Because H, I are a bi-Hamiltonian pair, R = H ◦ I−1 is a
recursion operator on Hamiltonian vector fields h⊥∂/∂τ , while its adjoint R∗ = I−1 ◦ H
is a recursion operator on covector fields � dτ with � = δH/δτ holding for some
Hamiltonian expressions H = H(τ, τx, τxx, . . .). This structure gives rise to a hierarchy
of commuting Hamiltonian flows on τ , corresponding to integrable non-stretching curve
motions in S2.
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Bringing together all these ideas, the purpose of this paper is, firstly, to identify the
geometric ‘map equations’ corresponding to the hierarchy of integrable flows of non-stretching
curves in constant-curvature spaces and, secondly, to extend this result as well as the geometric
relation known so far between the parallel moving frame formulation of these flows and bi-
Hamiltonian operators to other kinds of frames and more general target spaces. The main
results will be derived in two and three dimensions.

In particular, it is shown that

• the curve flow in S2 corresponding to the scalar mKdV equation in a parallel moving
frame is described by an mKdV analogue of the Schrödinger map equation;

• in a covariantly constant moving frame the mKdV curve flow in S2 corresponds to the
scalar potential mKdV equation and encodes bi-Hamiltonian operators yielding the mKdV
recursion operator in potential form;

• the kernel of the mKdV recursion operator gives rise to the SG equation describing a
curve flow in S2 given by the wave map equation;

• analogous curve flows in S3 formulated in both covariantly-constant and parallel
moving frames yield bi-Hamiltonian operators associated with O(2)-invariant vector
generalizations of the potential mKdV equation and the SG equation;

• an enlarged hierarchy of curve flows in S3 arises through a ‘square root’ of the vector
mKdV recursion operator derived from an encoding of bi-Hamiltonian operators in a
left-invariant moving frame which is tied to the Lie-group structure SU(2) � S3;

• the bottom flow in the enlarged hierarchy is a group-invariant analogue of the Schrödinger
map equation.

In addition, higher dimensional generalizations of these geometric map equations, vector
soliton equations and bi-Hamiltonian operators will be obtained for flows of curves in constant-
curvature spaces via a covariantly-constant moving frame and in Lie-group spaces via a left-
invariant moving frame. Underlying all these results is a main insight that the torsion and
curvature parts of the Cartan structure equations associated with the general flow of a curve
as formulated by a suitable moving frame (adapted either to the curve or to the geometry in
which the curve moves) together carry a geometrical encoding of bi-Hamiltonian operators.

Related work on derivations of soliton equations from flows of curves in conformal and
similarity geometries, affine geometry, and Klein geometries appears in [11, 14–18].

Key definitions pertaining to Hamiltonian structures are stated in the appendix. See
[19, 20] for a full summary of Hamiltonian theory developed for PDE systems.

2. Wave maps and mKdV maps from integrable flows of curves on the sphere and the
hyperboloid

Consider a flow of a non-stretching curve γ (t, x) in a two-dimensional constant-curvature
space: N = S2 the sphere or N = H 2 the hyperboloid or N = R

2 the plane. Let χ denote
the Gaussian curvature, respectively +1,−1, 0, let g denote the metric tensor, and let J be the
Hodge-star operator. To begin, the flow equation of motion of γ (t, x) will be shown to exhibit
a natural Hamiltonian structure when formulated in a covariantly-constant orthonormal frame,

∇xe1 = ∇xe2 = 0, e2 = Je1. (2.1)

First, the non-stretching condition |γx |g = 1 with x scaled to be the arclength implies that the
tangent vector and normal vector to the curve γ (t, x) are given by

γx = cos θe1 + sin θe2 = X, Jγx = sin θe1 − cos θe2 = JX, (2.2)
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where the variable θ is a rotation angle relating the covariantly constant frame to an adapted
(Frenet) frame X, JX. Note that the Serret–Frenet equations become

∇xX = νJX (2.3)

which yields the expression

ν = −θx (2.4)

for the intrinsic curvature of γ (t, x) in N. Hence, θ = −∫
ν dx is a nonlocal curvature

invariant of γ (t, x). Due to this relationship, the Hamiltonian structure arising from the
covariantly-constant frame equations will be analogous to a potential formulation. In this
frame, a non-stretching curve motion γt = h1e1 + h2e2 is O(3)-invariant if, and only
if, h1 = h1(θ, θx, θxx, . . .) and h2 = h2(θ, θx, θxx, . . .) are functions of the (differential)
invariants of the curve. An invariant of motion is � coming from the geometrical equation

∇tX = �JX (2.5)

for the evolution of the frame. In terms of θ , the equation of motion for the curve is given by
D−1

x applied to the flow equation on ν (cf section 1),

νt = R(h⊥) + χh⊥ (2.6)

which yields

−θt = R∗(D−1
x h⊥

)
+ χD−1

x h⊥ (2.7)

with

h⊥ = h1 sin θ − h2 cos θ (2.8)

and

h‖ = h1 cos θ + h2 sin θ = −D−1
x (θxh⊥). (2.9)

Here,

R∗ = D2
x + ν2 − νD−1

x νx (2.10)

is the adjoint of the mKdV recursion operator

R = D2
x + ν2 + νxD

−1
x ν. (2.11)

This flow equation on θ possesses a Hamiltonian form

−θt = H̃(h⊥) + χ Ĩ(h⊥) (2.12)

where

H̃(h⊥) = Dxh⊥ + θxD
−1
x (θxh⊥) = �, Ĩ(h⊥) = D−1

x h⊥ = � ′ (2.13)

are compatible Hamiltonian cosymplectic operators. Note � ′ is related to � by its inverse
image under R∗. Compared to the formulation in an adapted frame, here h⊥ (normal frame
component of motion) and � (connection component for the frame motion) switch roles, so
on the x-jet space of the flow variable θ(t, x),�∂/∂θ represents a Hamiltonian vector field (as
likewise does � ′∂/∂θ ) and h⊥ dθ represents a related covector field. A corresponding feature
is that the operators Ĩ and H̃ are respective inverses of the operators H and I appearing in the
Hamiltonian form of the flow equation on ν (cf section 1)

νt = H(�) + χI(�). (2.14)

Consequently, the recursion operators R = H ◦ I−1 and R̃ = H̃ ◦ Ĩ−1 = I−1 ◦ H = R∗

arising in the flow equations on ν and θ are adjoints. These recursion operators generate a
hierarchy of commuting Hamiltonian flows on θ and ν.
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The structure of the hierarchy looks simplest in the planar case, χ = 0. The flow equation
(2.12) produces a hierarchy of commuting flows −θt = �(k) = Ĩ

(
h⊥(k)

)
generated by the

operator R̃, with involutive Hamiltonians H = H(k) given by δH/δθ = h⊥(k) forming a
hierarchy generated through the adjoint operator R̃∗, k = 0, 1, 2, . . . ; equivalently, there
is a hierarchy of commuting flows νt = h⊥(k) and corresponding involutive Hamiltonians
H = H(k) such that δH/δν = �(k), satisfying h⊥(k) = H(� (k)), k = 0, 1, 2, . . . , generated
by the operators R = R̃∗ and R∗ = R̃. The relation ν = −θx induces a one-to-one
correspondence between the hierarchies of flows on the Hamiltonian variables ν and θ .

The hierarchy starts at the k = 0 flow,

h⊥(0) = νx, � (0) = ν, H (0) = 1
2ν2 = 1

2θ2
x , (2.15)

which produces a convective (travelling wave) equation νt = νx and θt = θx . Higher flows in
the hierarchy are given by

h⊥(k) = Rk(νx), � (k) = R∗k(ν), k = 1, 2, . . . . (2.16)

In particular, the k = +1 flow is the mKdV equation νt = νxxx + 3
2ν2νx or in potential form

θt = θxxx + 1
2θ3

x . Each flow (2.16) is bi-Hamiltonian, since �(k) = H̃
(
h⊥(k−1)

) = Ĩ
(
h⊥(k)

)
and hence

−θt = Ĩ(δH (k)/δθ) = H̃(δH (k−1)/δθ), k = 1, 2, . . . , (2.17)

or equivalently

νt = H(δH (k)/δν) = I(δH (k+1)/δν), k = 0, 1, 2, . . . . (2.18)

The hierarchy also contains a k = −1 flow characterized by the property that it gets
mapped into the stationary flow θt = 0 = νt under the recursion operators R and R̃. Hence
in this flow h⊥(−1) and �(−1) satisfy the equation 0 = H̃

(
h⊥(−1)

)
with �(−1) = Ĩ

(
h⊥(−1)

)
,

producing a nonlocal evolution equation on ν related in potential form on θ to the SG equation
as shown in more detail later.

Linear combinations of the flows in this hierarchy produce commuting bi-Hamiltonian
flows in the non-planar case, χ �= 0:

νt = h⊥(k+1) + χh⊥(k), δH (k,χ)/δν = �(k+1) + χ�(k), (2.19)

which will be called the +k flow, satisfying the property

νt = H(δH (k,χ)/δν) = I(δH (k+1,χ)/δν) (2.20)

where the Hamiltonians are given by

H = H(k,χ) := χH(k) + H(k+1). (2.21)

In an equivalent potential form, the +k flow is

−θt = �(k+1) + χ�(k), δH (k,χ)/δθ = h⊥(k+1) + χh⊥(k), (2.22)

which obeys

−θt = Ĩ(δH (k,χ)/δθ) = H̃(δH (k−1,χ)/δθ). (2.23)

Independently of χ , associated with the flows on ν and θ are a hierarchy of commuting
Hamiltonian vector fields h⊥(k)∂/∂ν and a hierarchy of involutive variational covector fields
�(k) dν, k = 0, 1, 2, . . . , with a corresponding potential form given by switching ν and θ , as
well as h⊥(k) and �(k).

Finally, the motion of γ (t, x) determined by these flows will now be derived through the
relation h⊥ = h⊥(k) producing a hierarchy of non-stretching curve motions from the hierarchy
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of commuting Hamiltonian vector fields h⊥(k)∂/∂ν. The equation of motion for the flow of
the curve γ (t, x) is given by

γt = h‖X + h⊥JX (2.24)

with

h‖ = D−1
x (νh⊥). (2.25)

The 0 flow is produced by

h⊥ = νx, h‖ = 1
2ν2, (2.26)

which gives the equation

γt = 1
2ν2X + νxJX. (2.27)

Integration by parts and substitution of the Serret–Frenet relations

X = γx, νJX = ∇xγx (2.28)

then yields

γt = ∇2
xγx + 3

2 |∇xγx |2gγx, with |γx |g = 1. (2.29)

This motion will be called a non-stretching mKdV map equation. The higher flows in the
hierarchy give analogous higher order mKdV map equations, derived recursively via the
Serret–Frenet relations and their x-derivatives: νxJX = ∇x(νJX) + ν2X = ∇2

xγx + ν2γx and
so on. For instance, the +1 flow has

h⊥ = νxxx + 3
2ν2νx, h‖ = ννxx − 1

2ν2
x + 3

8ν4, (2.30)

and so

γt = (
ννxx − 1

2ν2
x + 3

8ν4
)
X +

(
νxxx + 3

2ν2νx

)
JX

= ∇x

(
3
2ν3JX + 3

2 (ν2)xX + ∇2
x (νJX)

)
+

(
(ν2)xx − 5

2ν2
x + 7

8ν4
)
X (2.31)

which yields

γt = ∇4
xγx + 3

2 |∇xγx |2g∇2
xγx + 3

(|∇xγx |2g
)
x
γx +

(
5
2

(|∇xγx |2g
)
xx

− 5
2 |∇2

xγx |2g + 27
8 |∇xγx |4g

)
γx,

(2.32)

again with |γx |g = 1. In general, the +k flow for k = 0, 1, . . . corresponds to an mKdV map
equation of order 3 + 2k.

The −1 flow in contrast comes from the equation

0 = � = Dxh⊥ + νh‖, (2.33)

which is directly equivalent to ∇tX = �JX = 0. This motion is just a wave map equation,

∇t γx = 0, (2.34)

subject to the non-stretching condition

|γx |g = 1. (2.35)

Furthermore, t can be conformally scaled so that the curve motion has unit speed

|γt |g = 1. (2.36)

In the planar case, i.e. N = R
2, the wave map equation reduces to an ordinary wave equation,

as the flow on ν = −θx is stationary νt = −θtx = 0 due to χ = 0. The −1 flow equation for
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χ �= 0 is νt = χh⊥ where ν = −h‖−1Dxh⊥ and h‖ =
√

1 − h⊥2, which gives a hyperbolic
scalar PDE

νtx = −sgn(χ)

√
χ2 − ν2

t ν (2.37)

on ν. In potential form, these relations imply h⊥ = sin θ, h‖ = cos θ , up to a shift in θ

(equivalently, h1 = 1, h2 = 0 are constants), while � ′ = D−1
x sin θ . Hence, the −1 flow in

the non-planar case, namely a non-stretching wave map on N = S2 or H 2, is given by

θtx = −χ sin θ (2.38)

which is equivalent to the SG equation.
In addition to all these Hamiltonian flows of curves, there is a trivial flow produced by

h⊥ = 0, h‖ = 1, falling outside the hierarchy. This flow yields the curve motion γt = X = γx

which is just a convective (travelling wave) map equation.
In summary, in two-dimensional constant-curvature spaces there is a hierarchy of bi-

Hamiltonian commuting flows of non-stretching curves γ (t, x); the 0 flow is described by
an mKdV map equation, such that the curvature invariant of γ in a Frenet frame satisfies
the mKdV equation to within a convective term, while +k flow is a higher order analogue.
The wave map equation describes a −1 flow such that it is mapped into the stationary flow
under the recursion operator of the hierarchy, with the curvature invariant of γ in a covariantly
constant frame satisfying the SG equation.

3. Frame formulations of integrable flows of curves in three dimensions

The results just summarized in two dimensions have a natural generalization to three (and
higher) dimensions formulated in a more general geometric setting. Let (N, g) be a three-
dimensional Riemannian manifold and consider a flow of a curve γ (t, x) in N. Write
X = γx = qaea for the tangent vector along the curve and Y = γt = haea for the evolution
vector of the flow of the curve, where ea is any orthonormal frame defined in the tangent space
Tγ N on the two-dimensional surface swept out by γ (t, x) in N. Note that the orthonormality
of the frame is expressed by g(ea, eb) = δab (Kronecker symbol); hereafter this frame metric
will be used to freely raise and lower frame indices, and the summation convention is assumed
on all repeated frame indices. Write ∇ for the covariant derivative determined by the metric
g on N and |X|2g = g(X,X) for the metric norm squared of X on the tangent space TxN .
Suppose γ (t, x) is non-stretching under the flow, so |X|2g = qaqa = 1 is unit normalized
without loss of generality. The frame formulation of covariant derivatives is provided by the
introduction of connection 1-forms wab (skew in ab) related to the frame vectors ea through
the Cartan structure equations as follows (see also [13]). On the surface Tγ N the content of
the Cartan equations is that the covariant derivatives ∇x along the curve and ∇t along the flow
have vanishing torsion

∇xγt − ∇t γx = [γx, γt ] = 0 (3.1)

and carry curvature

[∇x,∇t ] = R(γx, γt ) (3.2)

given by the Riemann tensor R(·, ·) [21] determined from g. When expressed in frame
components, the torsion and curvature equations look like

0 = Dxh
a − Dtq

a + hb�b
a − qb�b

a (3.3)

and

R(γx, γt )a
b = Dt�a

b − Dx�a
b + �a

c�c
b − �a

c�c
b (3.4)
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where

�ab = γx�wab = g(eb,∇xea) (3.5)

and

�ab = γt�wab = g(eb,∇t ea) (3.6)

are the Cartan connection matrices, and where

R(γx, γt )a
b = qchdR(ec, ed)a

b (3.7)

is the Cartan curvature matrix. (Alternatively, the connection matrices are seen to arise from
the pullback to Tγ N of the equation [21] ∇ea = −wa

b ⊗eb defining a Riemannian connection
wab in terms of an orthonormal frame ea associated with the Riemannian structure g and ∇
on N.)

These frame equations (3.3)–(3.7) will be demonstrated to directly encode pairs of
Hamiltonian operators with respect to some Hamiltonian flow variable producing a hierarchy
of integrable curve flows if ea and wab are chosen in a geometrical fashion determined entirely
by the curve γ and the geometry (N, g), in particular so the frame curvature matrix R(ec, ed)a

b

is everywhere constant on N.
Constant-curvature spaces (N, g) have the distinguishing property that, for all choices of

orthonormal frame ea ,

R(ec, ed)a
b = 2χδa[c δd]

b with χ = const, (3.8)

namely such spaces are homogeneous and isotropic, i.e. 3-sphere N = S3, χ = 1;
3-hyperboloid N = H 3, χ = −1; and Euclidean space N = R

3, χ = 0. Correspondingly,
the local frame structure group is SO(3). Thus, as the frame curvature matrix is constant on
N, there is a wide freedom available in determining both ea and wab geometrically in terms
of γ and g on these spaces. The precise nature of the encoding of Hamiltonian operators in
the frame structure equations depends essentially on whether the frame ea is adapted to the
tangent vector X of the curve.

3.1. Parallel frames and vector mKdV Hamiltonian operators

To begin, for the situation of an adapted moving frame ea , the components of X are given by
constants qa . The Hamiltonian flow variable in this case will be the frame components va of
v = ∇xX, with the associated Hamiltonian vector and covector field variables h⊥a,�a given
by the frame components of Y⊥ = Y − g(Y,X)X,� = ∇tX. The flow equation of motion
on v comes from the part of the curvature structure equation (3.2) projected along the tangent
direction of γ,∇t v = ∇x� + χY⊥, which makes use of the constant-curvature property of
(N, g). The remaining part of the curvature structure equation (projected into the normal
space of γ ) combined with the torsion structure equation (3.1) allows ∇t ,∇x, Y‖ = g(Y,X)

to be expressed in terms of �,Y⊥. These expressions look simplest if the connection wab is
also adapted to the curve by putting (∇x(ea)⊥)⊥ = 0, in which case ea becomes precisely a
parallel frame [10] such that ∇x(ea)⊥ = −vaX. In detail; �ab = 2q[avb] is the connection
equation of the parallel frame; the torsion equation yields

�a = h‖va + Dxh⊥a, Dxh‖ = h⊥ava (3.9)

where h‖ = haqa , and the normal part of the curvature equation yields

Dx�ab = 2�[avb] + 2q[aDx�b]. (3.10)

The tangential part of the curvature equation then gives

va
t = Dx�

a + 2vbD
−1
x (� [avb]) + χh⊥a. (3.11)
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Because of the non-stretching condition on X, observe vaqa = �aqa = 0 and likewise
h⊥aqa = 0. It is now convenient to regard va,�a, h⊥a as 2-component vectors v,�, h⊥ and
employ an index-free vector notation for writing the Hamiltonian operators. Hence, the flow
equation is given by

vt = H(�) + χJ −1(�) = R(h⊥) + χh⊥ (3.12)

in terms of the operators

H = Dx + ∗vD−1
x (∗v· ), J = Dx + vD−1

x (v· ), R = H ◦ J , (3.13)

where ∗ is the Hodge-star operator on vectors in two dimensions obeying the product identity2

C�(B ∧ A) = (∗A · B)∗C. As proved in [9] using the framework developed in [19, 20],
H and J are a pair of cosymplectic and symplectic Hamiltonian operators, and the formal
inverse J −1 = I as defined on the x-jet space of v(t, x) is a cosymplectic operator compatible
with H. Moreover, R is a hereditary recursion operator for a hierarchy of Hamiltonians flows
that are each invariant under the frame structure group. Group invariance requires the flow
components to be a covariant vector function h⊥ = h⊥(v, vx, vxx, . . .) on the jet space, so
accordingly the flow equation has an O(2)-invariant vector form, where this group O(2) is the
isotropy subgroup of the frame structure group leaving invariant X for an adapted (parallel)
frame. Because a parallel frame is determined geometrically by the curve γ up to a global
SO(2) rotation, the Hamiltonian variable v represents differential covariants of γ [22].

The 0 flow in the hierarchy is produced by h⊥ = vx , giving the vector PDE

vt = vxxx + 3
2 |v|2vx + χvx. (3.14)

This flow is a well-known vector generalization [23] of the mKdV equation, to within a
convective term that can be absorbed by a Galilean transformation x → x − χt, t → t . The
+k flow as obtained from h⊥ = Rk(vx) gives a vector mKdV equation of higher order 3 + 2k

on v. These flows correspond to geometric motions of the curve γ ,

γt = f
(
γx,∇xγx,∇2

xγx, . . .
) = haea, (3.15)

subject to the non-stretching condition |γx |g = 1. The equation of motion is obtained from
the decompositions ea = qaX + (ea)⊥ and ha = h‖qa + h⊥a with h‖ = D−1

x

(
h⊥ava

)
, after

substitution of the expressions h⊥a = h⊥a
(
vb, vb

x , v
b
xx, . . .

)
followed by use of the relations

va(ea)⊥ = ∇xγx, va
x (ea)⊥ = ∇x(v

aea) − va∇xea

= ∇2
xγx + |∇xγx |2gγx, (3.16)

and so on, where

∇x(ea)⊥ = −vaγx. (3.17)

In particular, for the 0 flow, h⊥a = va
x , h‖ = 1

2vava , thus

γt = haea = 1
2vavaX + va

x (ea)⊥ = ∇2
xγx + 3

2 |∇xγx |2gγx. (3.18)

Note that the trivial flow given by h⊥ = 0, h‖ = 1 corresponds to the motion γt = γx which
is a convective (travelling wave) map equation.

There is also a −1 flow contained in the hierarchy, with the property that h⊥ is annihilated
by the symplectic operator J and hence gets mapped into h⊥ = 0 under the recursion

2 Throughout, in any dimension, � denotes the interior product between a vector and a 1-form or 2-form, as well as
the contraction of a vector against an antisymmetric tensor; ∧ denotes the exterior product taking a pair of vectors into
an antisymmetric tensor, as well as the ordinary wedge product between forms; the Hodge-star operator ∗ is mapping
between a vector and a rank n − 1 skew tensor in n > 2 dimensions or between vectors in the n = 2 dimensional
case, with ∗2 = −1. In addition, vectors and 1-forms will be identified using the frame metric.
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operator R. Geometrically, this flow means simply J (h⊥) = � = 0 so γ satisfies the
equation of motion

� = ∇t γx = 0 (3.19)

which is the wave map equation on the target space N = S3,H 3, R
3. The resulting vector

PDE is a nonlocal evolution equation

vt = χh⊥ (3.20)

where h⊥ satisfies

0 = � = Dxh⊥ + h‖v and Dxh‖ = h⊥ · v. (3.21)

Note that this PDE possesses the conservation law 0 = Dx

(
h‖2 + |h⊥|2) = ∇x |γt |2g and so a

conformal scaling of t can be used to put

1 = |γt |2g = h‖2 + |h⊥|2. (3.22)

This relation enables h‖, h⊥ to be expressed entirely in terms of v. Its geometrical meaning
is that the flow is conformally equivalent to one with uniform speed. Consequently, the −1
flow vector PDE reduces to

vt = −sgn(χ)D−1
x

(√
χ2 − |vt |2v

)
(3.23)

which is equivalent to a hyperbolic vector equation

vtx = −
√

1 − |vt |2v (3.24)

after a further scaling t → χ−1t . This PDE is related to [24] a vector SG equation known
from O(4) sigma models, which will be derived later in potential form.

Theorem 1. In three dimensions there is a hierarchy of group-invariant integrable flows
of curves γ (t, x) in any constant-curvature space (N, g) � S3,H 3, R

3. The 0 flow is a
non-stretching mKdV map equation

γt = ∇2
xγx + 3

2 |∇xγx |2gγx, |γx |g = 1, (3.25)

while the +k flow is a higher order analogue γt = f
(
γx,∇xγx, . . . ,∇2k+2

x γx

)
. The −1 flow is

a non-stretching wave map equation

∇t γx = 0, |γx |g = |γt |g = 1, (3.26)

which is equivalent to the O(4) sigma model.

Group invariance has the geometric meaning here of covariance of the equation of motion
(3.15) of γ (t, x) under the group of isometries of (N, g), as implied by the O(2)-invariance
property of the vector expressions h⊥ = h⊥(v, vx, vxx, . . .) on the x-jet space of v(t, x).
Note that these expressions for each +k flow, k = 0, 1, . . . , are explicit polynomials, while the
−1 flow is only given by an implicit nonlocal expression in this setting.

Similarly to the derivation in two dimensions, associated with the curve flows in three
dimensions is a hierarchy of commuting Hamiltonian vector fields h⊥(k) · ∂/∂v and involutive
variational covector fields �(k) · dv, k = 0, 1, 2, . . . , generated by the recursion operator
R and its adjoint R∗. The hierarchy starts from h⊥(0) = vx,�

(0) = v, which has the
geometrical meaning that the Hamiltonian vector field h⊥(0)·∂/∂v is the infinitesimal generator
of x-translations, where x is the arclength along the curve γ . This hierarchy has a natural
bi-Hamiltonian structure h⊥(k) = H(δH (k)/δv) = I(δH (k+1)/δv) with �(k) = δH (k)/δv

determining the Hamiltonians H = H(v, vx, vxx, . . .). Consequently, the curve flows
themselves are bi-Hamiltonian:

vt = H(δH (k,χ)/δv) = I(δH (k+1,χ)/δv) (3.27)

where

H(k,χ) = χH(k) + H(k+1). (3.28)



2054 S C Anco

3.2. Covariantly-constant frames and vector potential mKdV Hamiltonian operators

The previous results will now be extended to the situation of a non-adapted moving
frame ea for curve flows in the same constant-curvature spaces. In this case, the frame
components qa of the tangent vector X are (non-constant) functions of t, x, and as a
consequence the most natural Hamiltonian variable will be given by v = X itself.
Compared to the previous case when v = ∇xX, the roles of the associated variables
Y⊥ = Y − Y‖X,� = ∇tX are switched here to be Hamiltonian covector and vector field
variables, respectively. This relationship is analogous to going to a potential formulation
in the Hamiltonian setting, similarly to the situation in two dimensions. The flow
equation of motion on v now comes from the part of the torsion structure equation (3.1)
projected into the normal space of γ,∇tX = (∇xY )⊥ = ∇xY⊥ + g(Y⊥,∇xX)X + Y‖∇xX,
while the curvature structure equation (3.2) and the tangential part of the torsion structure
equation are used to express ∇t ,∇x, Y‖ in terms of �,Y⊥.

There is a quite simple encoding of Hamiltonian operators in the frame components of
these equations if the frame ea is chosen to be covariantly-constant ∇xea = 0, i.e. parallel
transported, along the curve. (In a geometrical sense, whereas a parallel frame is completely
adapted to the curve, a covariantly-constant frame is minimally adapted yet still determined
entirely by geometrical considerations.) To give some details: the connection equation is
simply �ab = 0 while the curvature equation reduces to Dx�ab = −2χq[ahb]. The torsion
equation yields Dxh‖ = h⊥aq

a
x and so the flow equation becomes

qa
t = �a − 2χqbD

−1
x

(
q[ah⊥b]

)
(3.29)

with

�a = Dxh⊥a + h‖qa
x + qah⊥bq

b
x . (3.30)

Note that the non-stretching condition on X implies �aqa = h⊥aqa = 0 as before, but now
qa is the Hamiltonian variable and obeys the constraint qaqa = 1. For ease of notation,
qa,�a, h⊥a will be written as 3-component vectors with ��, �h⊥ ⊥ �q subject to |�q| = 1. A
useful vector product identity3 is �C�( �B ∧ �A) = �C × ( �B × �A) in three dimensions. This leads
to the operators

I = −�q × D−1
x (�q× ) (3.31)

and

H = Dx + �qxD
−1
x (�qx · ) + �q(�qx · ) (3.32)

in terms of which the flow equation is given by

�qt = χI(�h⊥) + H(�h⊥). (3.33)

The following result can be proved by computations similar to [9] based on the framework
presented in [19, 20]. Details will be given elsewhere.

Theorem 2. I,H are a pair of compatible Hamiltonian (cosymplectic) operators and obey
�q · I = �q · H = 0, with respect to the constrained Hamiltonian variable �q(t, x). The inverse
of I is a Hamiltonian symplectic operator

J = I−1 = −�q × Dx((�q× ) − �qD−1
x ((�q × �qx)· )) (3.34)

whose domain is defined on the x-jet space coordinates ⊥ �q.4 Then the flow equation on �q
takes the form �qt = χ �� ′ + R( �� ′) in terms of the operator R = H ◦J , where �� ′ = I(�h⊥) is
the inverse image of �� = H(�h⊥) under R.
3 Throughout, × denotes the standard cross product on three-dimensional vectors.
4 Namely, the coordinate space {(�qx, �qxx, . . .)⊥ = (�qx, �qxx + |�qx |2�q, . . .)} consisting of those vectors ⊥ �q derived
from the differential consequences of |�q|2 = 1.
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As a result,R = H ◦J will be a hereditary recursion operator for commuting Hamiltonian
vector fields ��(k) ·∂/∂ �q, k = 0, 1, 2, . . . , starting from ��(0) = �qx , the infinitesimal generator
of x-translations in terms of the arclength x along the curve γ . Likewise the adjoint operator
R∗ = J ◦ H will be a hereditary recursion operator for involutive variational covector
fields �h⊥(k) · d�q, k = 0, 1, 2, . . . , related by �h⊥(k) = J ( ��(k)) and thereby starting from
�h⊥(0) = J (�qx) = �qxx + |�qx |2�q. This hierarchy has a natural bi-Hamiltonian structure
��(k+1) = I

(�h⊥(k+1)
) = H

(�h⊥(k)
)

with �h⊥(k) = −δH (k)/δ�q determining the Hamiltonians
H = H(�q, �qx, �qxx, . . .). Because of the constraint |�q| = 1, the variational derivatives
involve a Lagrangian multiplier term λ(|�q| − 1) in the Hamiltonians to enforce the constraint
condition �q · δH/δ�q = 0. For instance, �h⊥(0) = �qxx + |�qx |2�q = −δH (0)/δ�q determines
H(0) = 1

2 |�qx |2 + λ(|�q| − 1) where, after variational derivatives are evaluated, λ = −|�qx |2.
The hierarchy �� ′ = ��(k), k = 0, 1, 2, . . . , produces commuting bi-Hamiltonian flows

on �q given by constrained vector PDEs

�qt = χ ��(k) + ��(k+1), |�q| = 1. (3.35)

Their Hamiltonian structure looks like

−�qt = I(δH (k,χ)/δ�q) = H(δH (k−1,χ)/δ�q) (3.36)

where

H(k,χ) = χH(k) + H(k+1) (3.37)

are the Hamiltonians as before. These PDEs have an O(3)-invariant form on the x-jet space
of �q(t, x), where �� ′ = ��(k)(�q, �qx, �qxx, . . .) and �h⊥ = �h⊥(k)(�q, �qx, �qxx, . . .) are covariant
vector functions given by explicit polynomial expressions. Correspondingly, the curve γ (t, x)

undergoes a group-invariant non-stretching motion

γt = f
(
γx,∇xγx,∇2

xγx, . . .
)

(3.38)

which is related to these vector expressions by substitution of

qaea = γx, qa
x ea = ∇x(q

aea) = ∇xγx, qa
xxea = ∇x

(
qa

x ea

) = ∇2
xγx, (3.39)

and so on, into the flow equation given by f = haea with ha = h‖qa + h⊥a and
h‖ = D−1

x

(
h⊥aq

a
x

)
.

The 0 flow on �q corresponds to the curve motion specified by the non-stretching mKdV
map equation (3.25), which yields

�qt = �qxxx + 3
2 (|�qx |2�q)x + χ �qx. (3.40)

This flow has the form of a vector mKdV potential equation subject to the constraint |�q| = 1.
More generally, the +k flow in the hierarchy is a higher order mKdV constrained-potential
equation arising from the mKdV map equation of order 3 + 2k in theorem 2 through
the geometrical relation between the frame components �h⊥ of the curve motion (γt )⊥ in
the covariantly-constant frame and the parallel frame. This relation is expressed via the
correspondence

v ↔ ∇xγx ↔ �qx, (3.41)

vx ↔ (∇2
xγx

)
⊥ ↔ D⊥

x �qx, (3.42)

and so on, where (on the domain of x-jet space coordinates ⊥ �q)

D⊥
x = Dx − �q�q · Dx = Dx + �q(�qx · ). (3.43)

Under this correspondence, the Hamiltonian operator (3.32) and symplectic operator (3.34)
in the covariantly-constant frame carry over, respectively, to the symplectic and cosymplectic
operators (3.13) in the parallel frame.
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Proposition 3. For any mKdV flow vt = h⊥(χ)(v, vx, vxx, . . .) in the parallel frame (where
h⊥(χ) denotes a linear combination of Hamiltonian vector fields h⊥(k+1) + χh⊥(k), k =
0, 1, . . .), the corresponding constrained-potential mKdV flow in the covariantly-constant
frame is explicitly given by �qt = −�q × D−1

x

(�q × �h⊥(χ)
(�qx,D

⊥
x �qx,

(
D⊥

x

)2�qx, . . .
))

. This
correspondence extends to the convective (travelling wave) flow in the two frames.

The converse correspondence is expressed via the augmented relations

�q ↔ γx ↔ (0, 1), (3.44)

�qx ↔ ∇xγx ↔ (v, 0), (3.45)

�qxx ↔ ∇2
xγx ↔ Dx(v, 0), (3.46)

and so on, using the derivative operator

Dx = Dx + (∗v, 0)×. (3.47)

(A helpful identity relating 2-component and 3-component vectors here is (v, 0) × (0, 1) =
(∗v, 0).) This operator comes from the geometrical form of the parallel frame ea in three
dimensions as follows: write (ea)⊥ ↔ e⊥ so ea = (e⊥, X) is adapted to X = γx . Then, the
conditions ∇x(ea)⊥ = −va and ∇xX = v for ea to be parallel [10] are expressed by

∇x(e⊥, X) = (−v ⊗ X, v) = −(∗v, 0) × (e⊥, X) (3.48)

where

g(v, e⊥) = v, g(X, e⊥) = g(X, v) = 0, (3.49)

with v ↔ va . Hence, a parallel frame has the invariant characterization ∇xea = 0 where ∇x

is the covariant version of Dx .

Proposition 4. Any constrained-potential mKdV flow �qt = ��(χ)(�q, �qx, �qxx, . . .) in the
covariantly-constant frame (where ��(χ) denotes a linear combination of Hamiltonian
vector fields ��(k+1) + χ ��(k), k = 0, 1, . . .) has the corresponding form vt =
H̃(�(χ)((0, 1), (v, 0), Dx(v, 0), . . .)) given by an mKdV flow, using the Hamiltonian operator
H̃ = Dx + ∗vD−1

x (∗v· ) from the parallel frame.

The constraint |�q| = 1 can be resolved by the introduction of variables

�q = (k, k), (3.50)

defined relative to any fixed unit vector n̂ by k = �q · n̂ and k = �q − kn̂, satisfying

1 = (k)2 + |k|2. (3.51)

Elimination of the scalar variable k then leads to unconstrained-potential mKdV flows in terms
of the 2-component vector variable k. To within a convective term, the 0 flow is given by

kt = kxxx + 3
2 ((|k|2(1 − |k|2)−1(|k|x)2 + |kx |2)k)x (3.52)

which is a vector generalization of the potential mKdV equation. In particular, for
�q = (cos θ, sin θ, 0) lying in a plane, where k = cos θ, k = (sin θ, 0), then θ satisfies
the potential mKdV equation θt = θxxx + 1

2θ3
x . This reduction has the geometrical meaning

that the curve γ (t, x) is restricted to lie on a totally geodesic two-dimensional subspace given
by the sphere S2 when χ = 1 or the hyperboloid H 2 when χ = −1 or the plane R

2 when
χ = 0 in the respective constant-curvature spaces N = S3,H 3, R

3.
The same correspondence also applies to the curve motion specified by the non-stretching

wave map equation (3.26), with t conformally scaled so that 1 = |γt |g , which gives the
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−1 flow in the hierarchy. This flow is characterized by the kernel of the recursion operator
0 = �� = R( �� ′) = H(�h⊥) in the covariantly-constant frame, corresponding to the kernel
of the symplectic operator in the parallel frame. Hence, the −1 flow equation is given by
�qt = χ �� ′ = χI(�h⊥) with �h⊥ determined by the geometrical equation �� = Dx

�h = 0 where
the vector �h = h‖�q + �h⊥ is thus constant. This vector also satisfies |�h| = |γt |g = 1, which
allows putting k = h‖, k = �q − h‖�h, relative to �h = n̂. Then the tangential and normal
parts of the −1 flow equation on �q yield nonlocal evolution equations kt = −χkD−1

x k and
kt = χk · D−1

x k, with the identity 1 = (k)2 + |k|2. Thus, after the scaling t → χ−1t is made,
the 2-component vector variable k satisfies the hyperbolic PDE

(
√

(1 − |k|2)−1kt )x = −k (3.53)

which is a well-known vector generalization [25, 26] of the SG equation. In particular,
under the reduction k = cos θ, k = (sin θ, 0), considered earlier where the curve γ (t, x)

lies on a totally geodesic two-dimensional subspace in N, the variable θ satisfies the ordinary
SG equation.

The bi-Hamiltonian operators in theorem 2 for the hierarchy of potential mKdV flows
are readily formulated by using the unconstrained variable k, providing a direct 2-component
vector generalization of the well-known bi-Hamiltonian structure of the SG hierarchy. Write
h⊥ = �h⊥ − n̂ · �h⊥n̂,�⊥ = �� − n̂ · ��n̂. Then, we have

kt = χI⊥(h⊥) + H⊥(h⊥) (3.54)

where the operators

I⊥ = kD−1
x (k + kk−1k· ) − ∗kD−1

x (∗k· ) (3.55)

and

H⊥ = Dx + Dx

(
kD−1

x ((kx · ) − k−1kxk· )) (3.56)

are given by the normal parts of I,H relative to n̂. The normal part of J relative to n̂ yields
an inverse operator of I⊥,

J ⊥ = Dx + k((kx · ) − k−1kxk· ) − k∗kD−1
x (|k|(k|k|−1)x(∗k· ) + (kx · ∗k)k−1|k|−2k· ).

(3.57)

With respect to the unconstrained Hamiltonian variable k(t, x), it can be shown using
computations similar to [9] that the operators I⊥,H⊥ are a compatible bi-Hamiltonian
(cosymplectic) pair, while J ⊥ is a Hamiltonian symplectic operator. Hence, the operator
R⊥ = H⊥ ◦ J ⊥ and its adjoint R⊥∗ = J ⊥ ◦ H⊥ are hereditary recursion operators for
the hierarchy of bi-Hamiltonian unconstrained vector potential mKdV flows including the
−1 flow given by the vector SG equation (3.53).

3.3. Left-invariant frames and square-root operators

Another choice of non-adapted moving frame ea is available by utilizing the group-manifold
structure that exists for positive constant-curvature spaces in three dimensions. Recall that
the compact semisimple Lie group SU(2) is isometric to the 3-sphere. The isomorphism is
expressed via left-invariant vector fields, giving at any point on N = S3 an identification
of the tangent space TxS

3 � su(2) � so(3) with the Lie algebra of SU(2), under which
the Riemannian metric on S3 is identified with the Cartan–Killing metric of so(3). Any
orthonormal basis in so(3) thereby determines a left-invariant frame ea on the space N = S3,
satisfying the commutator property

[ea, eb] = 2
√

χεab
cec (3.58)
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and the curvature relation

R(ec, ed)a
b = χεcd

eεea
b = 2χδa[c δd]

b, (3.59)

where εabc = εab
dδcd (Levi-Civita symbol) represents the so(3) Lie-algebra structure constants

and χ > 0 is the curvature scalar of N = S3. In contrast to a covariantly-constant frame, a
left-invariant frame is entirely adapted to the group-manifold geometry of the space N = S3

and so it is independent of any curves on this space. Nevertheless, such frames will be seen
to naturally encode Hamiltonian operators in the frame components of the Cartan structure
equations for group-invariant flows of curves γ (t, x) on N = S3. These flows will be invariant
under the group SO(3) of isometries that preserve the Lie-algebra structure of TxS

3 � so(3).
Because of the non-adapted nature of the left-invariant frame, the components qa of the

tangent vector X along γ are (non-constant) functions of t, x. So, the most natural Hamiltonian
variable will again be v = X while Y⊥ = Y −Y‖X and � = ∇tX continue to be the associated
Hamiltonian vector and covector field variables. The flow equation of motion has the same
geometrical form as before, given by the part of the torsion structure equation (3.1) projected
into the normal space of γ . However, a crucial difference now is that the curvature structure
equation (3.2) becomes redundant since the connection 1-form determined by the left-invariant
frame is just an algebraic expression

wab = εab
cec. (3.60)

In detail, the covariant derivative of the left-invariant frame in the tangent direction of the
curve yields

∇xea = − 1
2

√
χea×X = −√

χεab
cqbec (3.61)

and in the flow direction yields

∇t ea = − 1
2

√
χea×Y = −√

χεab
chbec, (3.62)

giving the connection matrices �ab = √
χεabcq

c and �ab = √
χεabch

c. Here, × denotes
the so(3) Lie-algebra product on TxS

3. Related to this structure, the frame components of
� ′ = X×Y will be seen to play the role of a Hamiltonian vector field. The flow equation
coming from the Cartan structure equations is

qa
t = Dxh⊥a + h‖qa

x + qah⊥bq
b
x + 2

√
χ� ′a (3.63)

in terms of

� ′a = εbc
aqbh⊥c, (3.64)

where Dxh‖ = h⊥aq
a
x is again obtained from the tangential part of the torsion equation, and

now

�a = Dxh
a +

√
χ� ′a. (3.65)

As before, qaqa = 1 while � ′aqa = �aqa = h⊥aqa = 0, and the same 3-component vector
notation will be employed hereafter. Consequently, the flow equation takes the Hamiltonian
form

�qt = H(�h⊥) + 2
√

χI(�h⊥) (3.66)

where the operator

H = Dx + �qxD
−1
x (�qx · ) + �q(�qx · ) (3.67)

is unchanged, but now

I = �q× (3.68)
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is an algebraic operator (with the so(3) Lie-algebra product identified with the vector cross
product) satisfying I2 = �q × (�q× ) = −1 + �q(�q· ) = −id⊥. Omitting details, it can be proved
that these operators enjoy the same properties as the Hamiltonian operators (3.32) and (3.31)
in the covariantly-constant frame.

Theorem 5. I,H are a pair of compatible Hamiltonian (cosymplectic) operators and
obey �q · I = �q · H = 0, with respect to the constrained Hamiltonian variable �q(t, x).
The inverse of I is a Hamiltonian symplectic operator J = I−1 = −�q× = −I whose
domain is defined on the x-jet space coordinates ⊥ �q.5 Then the flow equation on �q becomes
�qt = 2

√
χ �� ′ + R( �� ′) in terms of the operator R = H ◦ J , where �� ′ = I(�h⊥) is the

inverse image of �� = H(�h⊥) +
√

χI(�h⊥) under the shifted operator R′ = R +
√

χ , namely
�� = R′( �� ′).

On the x-jet space of �q(t, x), it follows that �� · ∂/∂ �q has the geometrical meaning of a
Hamiltonian vector field as does �� ′ · ∂/∂ �q, and �h⊥ · d�q has the geometrical meaning of a
variational covector field. Hence, R = H ◦ J and its adjoint R∗ = J ◦ H will be hereditary
recursion operators for respective hierarchies of commuting Hamiltonian vector fields ��(k)

and involutive variational covector fields �h⊥(k), k = 0, 1, 2, . . . , related by �h⊥(k) = J ( ��(k)).
Because J = −I is purely an algebraic operator, these recursion operators are like a ‘square
root’ of the ones obtained from the covariantly-constant frame. The hierarchy starts at

��(0) = �qx, (3.69)

describing infinitesimal x-translations in terms of the arclength x along the curve γ , while

�h⊥(0) = J (�qx) = −�q × �qx. (3.70)

Next comes

��(1) = R(�qx) = −H(�q × �qx) = −�q × �qxx, (3.71)

and

�h⊥(1) = J (−�q × �qx) = −(�qxx + |�qx |2�q), (3.72)

followed by

��(2) = −�qxxx − 3
2 (|�qx |2�q)x (3.73)

and

�h⊥(2) = −�q × �qxxx − 3
2 |�qx |2�q × �qx. (3.74)

In particular, the vector fields ��(0), ��(2), and so on for even k, along with the covector
fields �h⊥(1), �h⊥(3), and so on for odd k, exactly reproduce the hierarchy of potential mKdV
Hamiltonian vector and covector fields with respect to �q(t, x) derived in the covariantly-
constant frame.

The full hierarchy in the left-invariant frame has a natural bi-Hamiltonian structure
��(k) = I

(�h⊥(k)
) = H

(�h⊥(k−1)
)

with Hamiltonians H = H(k)(�q, �qx, �qxx, . . .) determined
by �h⊥(k) = δH (k)/δ�q subject to Lagrangian multipliers enforcing the constraint condition
�q · δH/δ�q = 0 like before. Thus, modulo the Lagrangian multipliers,

H(1) = 1
2 |�qx |2, (3.75)

5 Namely, the coordinate space {(�qx, �qxx, . . .)⊥ = (�qx, �qxx + |�qx |2�q, . . .)} consisting of those vectors ⊥ �q derived
from the differential consequences of |�q|2 = 1.
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agrees with the bottom Hamiltonian in the hierarchy in the covariantly-constant frame, while
the next Hamiltonian in the hierarchy here is given by

H(2) = − 1
2 �q · (�qx × �qxx), (3.76)

and so on to all higher orders k = 1, 2, . . .. But there is no Hamiltonian H(0) since any scalar
triple product expressions that can be formed just out of �q and �qx are trivial.

The entire hierarchy k = 0, 1, 2, . . . , produces commuting flows

�qt = 2
√

χ ��(k) + ��(k+1), (3.77)

with |�q| = 1. These flows describe constrained vector PDEs having a bi-Hamiltonian structure

�qt = I(δH (k,χ)/δ�q) = H(δH (k−1,χ)/δ�q) (3.78)

given by the Hamiltonians

H(k,χ) = 2
√

χH(k) + H(k+1). (3.79)

The form of the PDEs here is SO(3)-invariant, expressed by covariant vector functions
�� ′ = ��(k)(�q, �qx, �qxx, . . .) and �h⊥ = �h⊥(k)(�q, �qx, �qxx, . . .) consisting of explicit polynomials

constructed using vector dot products and cross products on the x-jet space of �q(t, x).
Compared to the larger O(3)-invariance in the covariantly constant frame, invariance under
reflections on �q in the left-invariant frame is lost due to the explicit appearance of the cross-
product operator.

There is a corresponding hierarchy of group-invariant non-stretching motions

γt = f
(
γx,∇xγx,∇2

xγx, . . .
)

(3.80)

on the underlying curve γ (t, x). These motions are obtained through substitution of

qaea = γx, (3.81)

qa∇xea = 0, (3.82)

qa
x ea = ∇x(q

aea) − qa∇xea = ∇xγx, (3.83)

qa
x ∇xea = 1

2

√
χγx×∇xγx = − 1

2εab
cqa

x qbec, (3.84)

and so on, into the flow equation (3.80) given by f = haea with ha = h‖qa + h⊥a and
h‖ = D−1

x

(
h⊥aq

a
x

)
. The 0 flow on �q producing the vector PDE

�qt = −�q × �qxx + 2
√

χ �qx (3.85)

yields the curve motion

γt = γx×∇xγx. (3.86)

This motion defines a geometric map equation on the group-manifold N = S3 and will be
called the SO(3) group-motion equation for γ . A linear combination of this equation (3.86)
and the non-stretching mKdV map equation (3.25) gives the curve motion determined by the
+1 flow

�qt = −�qxxx − 3
2 (|�qx |2�q)x − 2

√
χ �q × �qxx. (3.87)

Conversely, the non-stretching mKdV map equation is given by a linear combination of the
0 flow and +1 flow equations. A similar result holds for the hierarchy of higher order non-
stretching mKdV map equations when expressed as vector PDEs for �q in the left-invariant
frame as follows.

Through the geometrical meaning of �h⊥ and �� as the respective frame components
of the normal motion of the curve (γt )⊥ and the evolution of its tangent vector ∇t γx , any
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constrained-potential mKdV flow in the covariantly-constant frame describes a non-stretching
curve motion corresponding to a flow in the left-invariant frame (and conversely) via replacing
Dx ↔ Dx in the expressions for the Hamiltonian vector fields ��(�q, �qx, �qxx, . . .) in the two
frames, where

Dx = Dx +
√

χ �q×. (3.88)

This correspondence arises geometrically from the relation between the frame equations
0 = ∇xea in the covariantly-constant case and 0 = (∇x +

√
χγx×)ea in the left-invariant case.

The shifted recursion operator then has the interpretation as a covariantized operator given by
R ↔ R′ under replacing Dx ↔ Dx in the Hamiltonian operator H.

There is an analogous correspondence relating the flows in the left-invariant frame to the
flows in the parallel frame via the relations

�q ↔ γx ↔ (0, 1), (3.89)

Dx �q = �qx ↔ ∇xγx ↔ (v, 0), (3.90)

Dx �qx ↔ ∇2
xγx ↔ Dx(v, 0), (3.91)

and so on, with

Dx = Dx + (∗v, 0)×, (3.92)

while

�q× ↔ ∗ ↔ (0, 1)×, (3.93)

similarly to the correspondence for the case of the covariantly-constant frame.

Theorem 6. For any flow �qt = ��(χ)(�q, �qx, �qxx, . . .) in the left-invariant frame (where
��(χ) denotes a linear combination of Hamiltonian vector fields ��(k+1) + 2

√
χ ��(k), k =

0, 1, . . .), there is a geometrically corresponding flow in the parallel frame, vt =
H̃(χ)(�(χ)((�0, 1), (v, 0), D

(χ)
x (v, 0), . . .)) = h⊥(χ)(v, vx, . . .) in terms of the mKdV

Hamiltonian operator H̃ = Dx + ∗vD−1
x (∗v· ), where D

(χ)
x = Dx − √

χ∗ and H̃(χ) =
H̃ − √

χ∗. Moreover, the shifted recursion operator in the left-invariant frame corresponds
exactly to the square root of the mKdV recursion operator

R′2 = −H̃ ◦ J̃ (3.94)

and

R′ = ∗J̃ = H̃∗, (3.95)

where J̃ = Dx + vD−1
x (v· ) is the mKdV symplectic operator.

The Hodge-star operator ∗ here plays the role in the parallel frame of an additional
Hamiltonian operator Ĩ = −∗ which is compatible with H̃ and corresponds to the symplectic
operator J in the left-invariant frame. Under this correspondence, the SO(3) group-motion
equation (3.86) is given by the flow

vt = ∗(
vxx + 1

2 |v|2v + χv
)

(3.96)

with

h⊥ = ∗v, (3.97)

which is outside the standard mKdV hierarchy. In particular, the square-root recursion operator
R′ generates an enlarged hierarchy of flows

vt = R′k(∗v) = h⊥(k), k = 0, 1, . . . , (3.98)
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commuting with the mKdV flows. These flows (3.98) inherit a bi-Hamiltonian structure from
their counterparts in the left-invariant frame,

vt = H̃(�(k−1)) = Ĩ(�(k)), (3.99)

in terms of the adjoint recursion operator R′∗ = J̃ ∗ = ∗H̃, where

�(k) = R′∗k
(v) = ∗h⊥(k). (3.100)

Associated with this structure are commuting Hamiltonian vector fields h⊥(k) · ∂/∂v and
involutive covector fields �(k) · dv, k = 0, 1, . . . , from which the Hamiltonians H(k) are
determined by

δH (k)/δv = ∗h⊥(k) = �(k). (3.101)

In detail, the hierarchy looks like

�(0) = v, H (0) = 1
2 |v|2; (3.102)

�(1) = ∗vx, H (1) = 1
2v · ∗vx; (3.103)

�(2) = −vxx − 1
2 |v|2v, H (2) = 1

2 |vx |2 + 1
8 |v|4; (3.104)

�(3) = − ∗ (
vxxx + 3

2 |v|2v)
, H (3) = 1

2vx · ∗vxx − 3
8 |v|2v · ∗vx, (3.105)

and so on.
This enlarged hierarchy contains the same −1 flow as in the mKdV hierarchy, which

arises directly from the kernel of the square-root recursion operator R′. In the left-invariant
frame, this flow is given by 0 = �� = H(�h⊥) +

√
χI(�h⊥) = Dx

�h where �h = �h⊥ + h‖�q is a
covariantly constant vector, with Dxh‖ = �h⊥ · �qx . Note that h‖ and �h⊥ are related through
the conservation law 0 = Dx |�h|2, with the consequence that |�h| depends only on t and hence
satisfies 1 = |�h|2 = |�h⊥|2 + h‖2 after t is conformally scaled. The −1 flow equation produced
on �q is then given by

�qt = √
χ �� ′ = √

χ �q × �h⊥ (3.106)

or simply

Dt �q = 0 (3.107)

so thus �q is covariantly constant with respect to the covariant derivative

Dt = Dt +
√

χ �h×. (3.108)

These equations in covariant-derivative form on �q and �h together are recognized to be a
constrained vector su(2) chiral model [27], which is geometrically equivalent to the non-
stretching wave map equation � = ∇t γx = 0 on the group-manifold N = SU(2) � S3, for
the curve γ (t, x) subject to 1 = |γx |g = |γt |g .

Interestingly, the wave map equation describing the −1 flow can be expressed as a vector

hyperbolic equation on �q(t, x) via eliminating �h⊥ = −√
χ �q × �qt and h‖ =

√
1 − |�h⊥|2 =√

1 − χ−1|�qt |2 to get

�qtx = −�qt · �qx �q − �q × (�qt +
√

1 − |�qt |2�qx

)
(3.109)

after χ is scaled out by t → t/
√

χ, x → x/
√

χ .
Another formulation of the −1 flow equation is provided by a covariant-derivative

vector SG equation derived as follows for the 2-component vector variable h⊥(t, x). First,
differentiation of 0 = Dt �q by Dx followed by use of the commutator

[Dx,Dt ] = χ(�q�h· − �h�q· ) (3.110)
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gives 0 = Dt �qx − χ �h⊥. Next, �qx can be eliminated in terms of h‖ and �h⊥ from
0 = Dx

�h = D⊥
x

�h⊥ + h‖�qx obtained by decomposition of �h and Dx into tangential and
normal parts relative to �q, where the derivative operator

D⊥
x = D⊥

x +
√

χ �q× (3.111)

satisfies �q · D⊥
x = �q · D⊥

x = 0. This operator has a natural meaning through the geometrical
correspondence

v ↔ ∇xγx ↔ �qx, vx ↔ (∇2
xγx

)
⊥ ↔ D⊥

x �qx, (3.112)

and so on, between the parallel frame and left-invariant frame. Finally, through the derivative
operator

D⊥
t = D⊥

t +
√

χ(�h⊥ × +h‖�q×) (3.113)

which obeys �q · D⊥
t = 0, we have the equation

−D⊥
t

(
h‖−1D⊥

x h⊥
) = χh⊥, (3.114)

where h‖ =
√

1 − |h⊥|2.

Theorem 7. In positive constant-curvature spaces (N, g) � S3 � SU(2) in three dimensions,
the group-invariant integrable flows of curves γ (t, x) comprise an enlarged hierarchy whose
even-order flows consist of the SO(3) group-motion equation

γt = γx×∇xγx

and higher order analogues, and whose odd-order flows consist of the non-stretching mKdV
map equation

γt = ∇2
xγx + 3

2 |∇xγx |2gγx

and higher order analogues, all subject to |γx |g = 1. The −1 flow is the non-stretching wave
map equation

∇t γx = 0, |γx |g = |γt |g = 1,

which is equivalent to the SU(2) chiral model.

Corollary. The −1, 0, +1 flows can be reformulated as motions of an arclength-parameterized
embedded curve in R

4 described by a 4-component vector variable �u(t, x). This vector is
constrained such that |�u| = 1 so the curve motion is confined to the 3-sphere S3 � SU(2),
and in addition |�ux | = 1 so that the curve does not stretch (namely, x is arclength). Under the
resulting identifications

γ ↔ �u, ∇x ↔ Dx − �u(�u · Dx), (3.115)

the wave map equation becomes the O(4) sigma model

�utx = −�ut · �ux �u; (3.116)

the mKdV map equation reduces to the model

�ut = �uxxx + 3
2 �uxx · �uxx �ux (3.117)

up to a convective term; and the SO(3) group-motion equation is given by the model

�ut = ∗(�u ∧ �ux ∧ �uxx). (3.118)

Here · is the dot product, ∧ is the wedge product and ∗ is the Hodge-star operator, on R
4.
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4. Hamiltonian operators and integrable flows of curves in higher dimensions

The derivation of bi-Hamiltonian operators from frame formulations of flows of non-stretching
curves in three-dimensional spaces S3 � SU(2),H 3, R

3 generalizes to all higher dimensions
both for the case of constant-curvature spaces and Lie-group spaces. As in three-dimensions,
the flow of a curve γ (t, x) in an n-dimensional Riemannian manifold (N, g) for any n � 2 has
associated with it the Cartan structure equations expressing curvature [∇x,∇t ] = R(γx, γt ) and
torsion ∇xγt − ∇t γx = [γx, γt ] = 0 in terms of orthonormal frame vectors ea and connection
1-forms wab in the tangent space Tγ N . The same natural encoding of a compatible pair of
Hamiltonian operators contained in these equations is seen in all dimensions, through the use
of a geometrical choice of ea and wab given by a covariantly-constant frame or a parallel frame
if N is a constant-curvature space or a left-invariant frame if N is a Lie-group space. For such
frames the curvature matrix will be constant on N, leading to a simple bi-Hamiltonian structure
based on the geometric variables given by the tangent vector X = γx = qaea along γ , the
flow vector Y⊥ = (γt )⊥ = h⊥aea normal to γ and the principal normals v = ∇xX = vaea and
� = ∇tX = �aea associated with the tangential and flow directions of γ , where |X|g = 1
and g(v,X) = g(�,X) = 0 for a non-stretching curve γ . Note that the frame components
of the principal normals v,� will be differential covariants of γ .

4.1. Constant-curvature spaces

Let (N, g) be an n-dimensional constant-curvature Riemannian manifold (n � 2), with
curvature scalar χ . The curvature matrix for any orthonormal frame ea is simply

R(ec, ed)a
b = 2χδa[c δd]

b. (4.1)

Recall that a parallel frame is adapted to γ via

ea = ((ea)⊥, X) (4.2)

such that the covariant derivative of the normal vectors in the frame

∇x(ea)⊥ = −vaX (4.3)

is tangential to γ and the covariant derivative of the tangent vector

∇xX = va(ea)⊥ (4.4)

is normal to γ (where, note, qa = const). The resulting Cartan structure equations carry over
directly from three dimensions to n dimensions where va,�a, h⊥a now are (n−1)-component
vectors. Thus, the flow equation on va retains the form (using index-free notation)

vt = H(�) + χI(�) = h′
⊥ + χh⊥ (4.5)

where

H = Dx + v�D−1
x (v∧ ), I−1 = J = Dx + vD−1

x (v· ) (4.6)

are, respectively, Hamiltonian cosymplectic and symplectic operators and R = H ◦ J is a
hereditary recursion operator as proved in [9]. Here, h⊥ = I(�) and its image h′

⊥ = H(�)

under R have the roles of Hamiltonian vector fields with respect to v(t, x), while the role
of � is a covector field. (Compared with [9] the present formulation of these operators is
manifestly O(n − 1)-invariant, employing just the vector dot product, interior and exterior
vector products. In particular, C�(B ∧ A) = (C · B)A − (C · A)B).

The resulting hierarchy of flows generated by R has the same structure as in three
dimensions: at the bottom the 0 flow is given by h⊥ = vx , with v seen to satisfy the vector
mKdV equation

vt = vxxx + 3
2 |v|2vx + χvx (4.7)
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up to a convective term. The non-stretching curve motion of γ produced by this flow is a
corresponding mKdV map equation

γt = ∇2
xγx + 3

2 |∇xγx |2gγx (4.8)

with |γx |g = 1. There is a −1 flow mapped into h′
⊥ = 0 underR in the hierarchy, which is given

by the kernel of H determined by � = 0. This yields a nonlocal flow h⊥ = −D−1
x (h‖v), with

the conservation law Dx(|h⊥|2 + h‖2) = 0 implying that the flow is conformally equivalent
to one with uniform speed. Thus, after a conformal scaling of t is made, v in this flow then
satisfies the vector hyperbolic equation

vtx = −
√

1 − |vt |2v. (4.9)

Equivalently, h⊥ obeys the vector SG equation

(
√

(1 − |h⊥|2)−1h⊥x) − t = −h⊥. (4.10)

The corresponding curve motion of γ is the non-stretching wave map equation

∇t γx = 0, |γx |g = |γt |g = 1, (4.11)

as seen from the geometrical meaning of �.
A covariantly-constant frame provides a different formulation of these main results,

arising in terms of vector potential variables. Recall that, since ∇xea = 0, the principal
normal for the tangential direction of γ for a covariantly-constant frame is given by va = qa

x

where qa �= const. In the Cartan structure equations in n dimensions, qa, h⊥a,�a now are
n-component vectors, with qa having unit norm and with h⊥a,�a ⊥ to qa . Compared to
three dimensions, vector cross products are replaced by interior and exterior products, so thus
the flow equation on qa becomes

�qt = χI(�h⊥) + H(�h⊥) = χ �� ′ + �� (4.12)

where

H = Dx + �qxD
−1
x (�qx · ) + �q(�qx · ) (4.13)

as before, while now

I = −�q�D−1
x (�q∧ ). (4.14)

The main results on these operators carry over to n dimensions: I,H are a pair of compatible
Hamiltonian (cosymplectic) operators obeying �q · I = �q · H = 0 with respect to the
constrained variable �q(t, x), and so J = I−1 defines a symplectic operator. (Note that
the domain of these operators consists of the x-jet space coordinates ⊥ �q.6) The role of
Hamiltonian vector fields is hence played by �� = H(�h⊥) and its inverse image �� ′ = I(�h⊥)

under the hereditary recursion operator R = H ◦ J . In dimensions n > 3, however, there is
a noteworthy difference that an explicit simple expression for the inverse of I can no longer
be derived.

The hierarchy of flows in the parallel frame corresponds to a hierarchy of constrained-
potential flows in the covariantly-constant frame as a result of the geometrical meaning of the
frame components �h⊥ for the normal motion (γt )⊥ of the curve as well as �� for the evolution
of the tangent vector ∇tX of the curve. It is natural to express this correspondence by first
resolving the constraint |�q| = 1 through splitting

�q = (k, k) (4.15)

6 Namely, the coordinate space {(�qx, �qxx, . . .)⊥ = (�qx, �qxx + |�qx |2�q, . . .)} consisting of those vectors ⊥ �q derived
from the differential consequences of |�q|2 = 1.
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into a scalar variable k and a (n− 1)-component vector variable k defined relative to any fixed
unit vector n̂, so

k =
√

1 − |k|2. (4.16)

This splitting yields the relations

�qx = (−k−1k · kx, kx), (4.17)

D⊥
x �qx = (−k−1k · D⊥

x kx,D
⊥
x kx

)
, (4.18)

and so on, where

D⊥
x = Dx + kk((k−1k)x · ) (4.19)

which comes from a similar splitting of D⊥
x = Dx + �q(�qx · ). Hence, the correspondence looks

like

v ↔ ∇xγx ↔ kx, vx ↔ (∇x
2γx

)
⊥ ↔ D⊥

x kx, (4.20)

and so on. In particular, as in three dimensions, the 0 flow on k is given by the vector potential
mKdV equation

kt = kxxx + 3
2

((
kx

2 + |kx |2
)
k
)
x

(4.21)

up to a convective term, while the −1 flow on k reduces to the vector SG equation

(k−1kt )x = −χk (4.22)

after a conformal scaling on t is used to put n̂ = �h⊥. All these flows inherit a natural
bi-Hamiltonian formulation which is obtained by splitting the operators I,H relative to n̂.

Theorem 8. The flow equation on the unconstrained variable k(t, x) takes the form

kt = χI⊥(h⊥) + H⊥(h⊥) = χ�′⊥ + �⊥ (4.23)

given by

I⊥ = kD−1
x (k + k(k−1k· )) − k�D−1

x (k∧ ) (4.24)

and

H⊥ = Dx + Dx

(
kD−1

x ((kx · ) − k−1kx(k· ))). (4.25)

These operators I⊥,H⊥ are a compatible Hamiltonian pair with respect to k, where
h⊥ = �h⊥ − n̂ · �h⊥n̂,�⊥ = �� − n̂ · ��n̂ (and likewise for �′⊥) are Hamiltonian covector and
vector fields, respectively.

In summary, in any n-dimensional constant-curvature space (N, g) there is a hierarchy
of bi-Hamiltonian flows of non-stretching curves γ (t, x), where the 0 flow is described by
the mKdV map equation (4.8) and the +k flow is a higher order analogue, while the wave
map equation (4.11) describes a −1 flow that is annihilated by the recursion operator of the
hierarchy. In a parallel frame, the principal normal components along γ for these flows
satisfy, respectively, a vector mKdV equation (4.7) and a vector hyperbolic equation (4.9).
A covariantly-constant frame gives rise to potentials for the principal normal components
along γ , satisfying a vector potential mKdV equation (4.21) and a vector SG equation (4.22),
respectively.
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4.2. Hamiltonian operators in Lie-group spaces

Importantly, the idea of utilizing a non-adapted moving frame for non-stretching curve flows
will now be carried over to Riemannian spaces (N, g) without the property of constant
curvature, specifically compact semisimple Lie-group manifolds N � G. These spaces have
a natural Riemannian structure [21] which is invariant under left multiplication, with the
Riemannian metric g given by the bilinear Cartan–Killing form in the Lie algebra g of the
Lie group G. (Recall that the Cartan–Killing form is nondegenerate when and only when G is
semisimple and positive when and only when G is compact.) To proceed, let (N � G, g) be
a n-dimensional (compact semisimple) Lie-group manifold (n > 2), generalizing the three-
dimensional case N = SU(2) � S3 (cf section 3.3). Any orthonormal basis for the Lie
algebra g � TxN provides a left-invariant orthonormal frame ea on N whose local structure
group is G itself, satisfying the commutator property

[ea, eb] = cab
cec (4.26)

where cab
c = c[ab]

c denotes the Lie-algebra structure constants. Note that the Jacobi relation
is c[ab

ecc]de = 0 while semisimplicity is expressed by cabc = c[abc] , where indices are raised
and lowered by the Cartan–Killing form g(ea, eb) = − 1

2cac
dcbd

c = δab . The frame curvature
matrix for N is given by the algebraic expression

R(ec, ed)a
b = 1

4ccd
ecae

b. (4.27)

A distinguishing feature of a left-invariant frame is that this matrix is constant on N.
The Cartan structure equations associated with the flow of a curve γ (t, x) generalize from

three dimensions, i.e. N = SU(2), to n dimensions, i.e. N = G, with the structure constants
cab

c in place of εab
c and with the Lie-algebra bracket in place of a vector cross product. In

particular, let ad(q)ba = cca
bqc denote the bracket on the n-component vector qa . Note that

qa has the geometrical meaning of a potential for the components va = qa
x of the principal

normal along γ . Hereafter, it will be convenient to scale out a constant factor χ from the
curvature R(ec, ed)a

b → χccd
ecae

b by putting cab
c → 2

√
χcab

c for ease of comparison with
the three-dimensional case.

Thus, the flow equation on �q (in index-free notation) is given by

�qt = √
χI(�h⊥) + H′(�h⊥) = √

χ �� ′ + �� (4.28)

where

I = ad(q) (4.29)

is an algebraic operator and

H′ = Dx + �qxD
−1
x (�qx · ) + �q(�qx · ) = H +

√
χI (4.30)

is a covariant version of the previous operator H = Dx + �qxD
−1
x (�qx · ) + �q(�qx · ) using the

derivative

Dx = Dx +
√

χad(q). (4.31)

As in three dimensions, the operators H (or H′) and I are a compatible Hamiltonian pair with
respect to the constrained variable �q(t, x), on the domain of x-jet space coordinates ⊥ �q. So
�� and �� ′ represent Hamiltonian vector fields, while �h⊥ represents a covector field. However,

in higher than three dimensions the operator I is no longer invertible because of the fact that
for any vector �q in g the kernel of ad(q) has a (nonzero) dimension at least equal to the rank of
the Lie algebra g, and all semisimple Lie algebras of dimension n > 3 have rank greater than 1
(see, e.g., [28]). Thus in the n > 3 dimensional case, I−1 does not exist since I(�c) = 0 for at
least one nonzero vector �c linearly independent of �q in g. This difficulty can be overcome by
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restricting the operators H, I to a suitable smaller domain, which will be seen to necessarily
introduce some nonlocality.

Let Cq denote the centralizer of �q in g, namely the set of all vectors �c commuting with �q
in g,

ad(q)�c = 0. (4.32)

Note that, for a given vector �q, the centralizer Cq is algebraically determined through the Lie-
algebra structure constants. Write C⊥

q for the orthogonal complement of Cq in g with respect
to the Cartan–Killing metric, so g = Cq ⊕ C⊥

q , and write C⊥q for the orthogonal complement
with respect to �q in Cq . The sets Cq,C⊥q are Lie subalgebras of g, and the set C⊥

q is an invariant
vector subspace in g under ad(q). Let PC⊥q

,PCq
,P⊥

Cq
denote the projection operators in g onto

C⊥q, Cq, C
⊥
q . Now decompose �h⊥ into the orthogonal parts �hC = PC⊥q

(�h⊥), �hC⊥ = P⊥
Cq

(�h⊥).

Proposition 9. For all vectors �c in C⊥q, �c · I = 0 while �c ·H = −�cx ·P⊥
Cq

− �cx · �qD−1
x (�qx · ) +

(�c · Dx)PC⊥q
.

Hence, I restricts to an operator in C⊥
q acting on �hC⊥ by

I(�h⊥) = ad(q)�hC⊥ := I⊥(�hC⊥). (4.33)

Consequently, I⊥ is now invertible on �hC⊥ , with

I−1
⊥ = ad(q)−1

⊥ (4.34)

where ad( )⊥ denotes the restriction of ad( ) to C⊥
q . Moreover, H can be adjusted to yield an

operator in C⊥
q if the condition

�c · H(�h⊥) = 0 (4.35)

for all vectors �c in C⊥q is used to determine �hC in terms of �hC⊥ as follows: introduce an
orthonormal basis �cµ for the vector space C⊥q , so

�cµ · �cν = δµν, (4.36)

and fix the x dependence of the basis by the orthogonality property

�cµ · �cν
x = 0. (4.37)

Then the basis coefficients of condition (4.35) on H yield the equation

Dxhµ = h‖�cµ · �qx + �cµ
x · �hC⊥ (4.38)

with

Dxh‖ = �qx · �hC⊥ + hµ�cµ · �qx, (4.39)

where hµ = �hC · �cµ denotes the basis coefficients of �hC . Hence, H becomes an operator in
C⊥

q acting on �hC⊥ by

H(�h⊥) = Dx(�hC⊥ + h‖�q + hµ�cµ) = D⊥
x

�hC⊥ + h‖�q⊥
x + hµ�cµ

x := H⊥(�hC⊥) (4.40)

where

D⊥
x = P⊥

Cq
(Dx) = Dx + �q(�qx · ) + �cµ�cµ

x (4.41)

and

�q⊥
x = P⊥

Cq
(�qx) = �qx + �cµ�q · �cµ

x . (4.42)
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To obtain the closest generalization of the results in three dimensions, �q should be
restricted to obey the condition

PCq
(�qx) = 0, (4.43)

so thus �qx = �q⊥
x will lie in the range of the operators H⊥, I⊥. In this situation, h‖ and hµ are

able to be explicitly determined in terms of �hC⊥ by

Dxh‖ = �qx · �hC⊥ , Dxhµ = �cµ
x · �hC⊥ . (4.44)

In addition, we have

�cµ
x = ad(q)−1

⊥ [�cµ, �qx] (4.45)

where the bracket denotes the Lie-algebra product.
The following result is a direct generalization of theorem 5:

I⊥ = ad(q)⊥ and H⊥ = D⊥
x + �qxD

−1
x (�qx · ) + �cµ

x D−1
x

(�cµ
x · ) are a pair of compatible

Hamiltonian (cosymplectic) operators obeying PC⊥q
(I⊥) = PC⊥q

(H⊥) = 0 with respect to
the constrained variable �q(t, x) and J⊥ = I−1

⊥ = ad(q)−1
⊥ is a symplectic operator (the

domains of these operators consists of the x-jet space coordinates associated with C⊥
q ). The

flow equation on �q is given by �qt = √
χ �� ′

C⊥ + ��C⊥ where ��C⊥ = H′
⊥(�hC⊥), �� ′

C⊥ = I⊥(�hC⊥)

are Hamiltonian vector fields produced from the covector field �hC⊥ . Here,

H′
⊥ = D⊥

x + �qxD
−1
x (�qx · ) + �cµ

x D−1
x

(�cµ
x · ) = H⊥ +

√
χI⊥ (4.46)

is a covariant version of H⊥ with

D⊥
x = D⊥

x +
√

χad(q)⊥. (4.47)

Moreover, R′ = H′
⊥ ◦ J⊥ is a hereditary recursion operator.

Remark. N = SU(2) � S3 is the only compact semisimple Lie group of dimension
1 < n � 3. For this group, the Lie bracket ad(q) has an empty kernel for any (nonzero) vector
�q in the Lie algebra g = su(2) � so(3) and hence the variables �cµ disappear. Consequently,
on the domain of x-jet space coordinates ⊥ �q, the operators H, I are a compatible Hamiltonian
pair such that the inverse operator J = I−1 exists and is a Hamiltonian symplectic operator,
and R = H ◦ J is a hereditary recursion operator, agreeing with the operators in theorem 5.

As in three dimensions, R′ generates a hierarchy of bi-Hamiltonian flows. At the bottom
the 0 flow is simply

�� ′
C⊥ = �qx, (4.48)

while next the +1 flow is given by

�� ′
C⊥ = R′(�qx) = Dx

(
ad(q)−1

⊥ �qx + D−1
x

(�cµ
x · ad(q)−1

⊥ �qx

)�cµ

)
(4.49)

which involves essential nonlocal terms in (x-derivatives of) the variables �cµ. Accordingly,
modulo such nonlocal terms, the 0 flow equation describes a natural generalization of the
SO(3) group-motion equation on �q for the Lie group G,

(�qt )local = D⊥
x

(
ad(q)−1

⊥ �qx

)
+ 2

√
χ �qx. (4.50)

Under this flow the curve γ undergoes a non-stretching motion given by the geometric map
equation

(γt )⊥ = ad(γx)
−1
⊥ ∇xγx (4.51)
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with |γx |g = 1, where ⊥ denotes the projection with respect to P⊥
Cq

in the tangent space
TxN � g of the curve γ , corresponding to

�hC⊥ = ad(q)−1
⊥ �qx. (4.52)

In a similar way, the +1 flow equation describes a linear combination of the group-motion
equation (4.50) and a group-invariant generalization of the mKdV equation on �q given by

(�qt )local = D⊥
x

(
ad(q)−1

⊥
(
D⊥

x (ad(q)−1
⊥ �qx)

)) − 1
2

(|ad(q)−1
⊥ �qx |2�q

)
x

(4.53)

up to nonlocal terms. The curve motion of γ produced by this flow is an analogous group-
invariant mKdV map equation which contains essential nonlocal terms, corresponding to

(�hC⊥)local = ad(q)−1
⊥

(
Dx

(
ad(q)−1

⊥ �qx

))
. (4.54)

Higher order (even and odd) flows are similar in form to the 0, +1 flows.
There is a −1 flow that is mapped into �� = 0 under R′ in the hierarchy. In this flow, �q

and �hC⊥ satisfy the equations

0 = Dt �q = Dx
�h, (4.55)

which are equivalent to a constrained vector chiral model, where �h = �hC⊥ + h‖�q + hµ�cµ obeys
the conservation law 0 = Dx |�h|2 and so |�h|2 = 1 after t is conformally scaled. Another
formulation of the −1 flow equation is obtained by substituting

�hC⊥ = ad(q)−1
⊥ �qt (4.56)

from the first equation into the second equation, which then yields a vector hyperbolic equation
on �q(t, x),

(Dx �qt )local = [�qx, ad(q)−1
⊥ �qx

]
, (4.57)

up to certain nonlocal terms involving x-derivatives of �cµ. The corresponding curve motion
of γ is simply given by the non-stretching wave map equation

∇t γx = 0, 1 = |γx |g = |γt |g. (4.58)

In summary, in n-dimensional Lie-group spaces (N � G, g) there is a hierarchy of bi-
Hamiltonian flows of non-stretching curves γ (t, x), subject to the geometric condition that the
principal normal along γ is orthogonal to the Lie-algebra centralizer in the normal space to γ ,
i.e. g(∇xγx, �) = 0 for all � annihilated by ad(γx). The hierarchy starts at the 0 flow whose
normal motion is described by the geometric group-motion map equation (4.51) associated
with G, while the wave map equation (4.58) describes a −1 flow that is annihilated by the
recursion operator of the hierarchy. In a left-invariant frame the principal normal components
along γ for these flows, respectively, satisfy a vector group-motion equation (4.50) and a
vector hyperbolic equation (4.57).

5. Conclusion

The main goal of this paper has been the study of various kinds of moving frames—parallel,
covariantly-constant, left invariant—in deriving bi-Hamiltonian operators and vector soliton
equations from flows of non-stretching curves in Riemannian manifolds. A main insight,
following the ideas of [8, 9, 11], is that the bi-Hamiltonian structure is geometrically encoded
in the Cartan structure equations for the torsion and curvature associated with a curve flow
whenever the frame curve matrix is everywhere constant on the manifold. The curve motions
corresponding to the soliton equations determined by such a bi-Hamiltonian structure are
found to be geometric map equations, in particular wave maps and mKdV/group-invariant
analogues of Schrödinger maps.
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A unified treatment of constant-curvature manifolds and Lie-group manifolds based on
Riemannian symmetric spaces will be given in a forthcoming paper.
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Appendix A

The following summary of Hamiltonian structure is adapted from [19, 20].
Consider the jet space {(x, u, ux, uxx, . . .)} of a scalar or vector variable u(x). Let h∂/∂u

be a vector field with component(s) h = h(x, u, ux, uxx, . . .) and � du a covector field with
component(s) � = �(x, u, ux, uxx, . . .). Write δh = pr(h∂/∂u) denoting the variation
(linearization) induced by h, i.e. the prolonged action of the vector field; write δ/δu for the
variational derivative with respect to u.

A skew-adjoint operator H mapping � into h is Hamiltonian (cosymplectic) iff

0 =
∫

(du ∧ δhH(du)) dx with h = H(du).

This condition is equivalent to the vanishing of the Schouten bracket of H. A skew-adjoint
operator J mapping h into � is symplectic iff

0 =
∫

(h3�δh1J (h2) + cyclic) dx

for arbitrary hi . The operator R = H ◦ J is a hereditary recursion operator on h iff

0 = R(δh1R(h2) − δh2R(h1))

for arbitrary hi .
A (Hamiltonian) functional is an expression H = ∫

H(x, u, ux, uxx, . . .) dx. The Poisson
bracket with respect to a Hamiltonian operator H is defined by

{H,E}H =
∫

(H(δE/δu)�δH/δu) dx

for any functionals H,E. This bracket is skew and obeys the Jacobi identity. h∂/∂u is a
Hamiltonian vector field if there exists a (Hamiltonian) functional H such that

δhE = {H,E}H
holding for all functionals E. � du is a variational (Hamiltonian) covector field if there exists
a (Hamiltonian) functional H such that

� = δH/δu.

There is a canonical pairing between Hamiltonian vector fields h∂/∂u and variational
covector fields � du via

� = ω(h, ·)J
where

ω(h1, h2)J =
∫

h1�J (h2) dx

is a symplectic 2-form. In particular, the operators J and H directly give mappings
h∂/∂u �→ J (h) du and � du �→ H(�)∂/∂u.
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